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We show how to construct transfer matrices equivalent to arbitrary nonlinear maps. The eigenvector corre-
sponding to the eigenvalue one gives directly the invariant measure of the map. When applied to the logistic
map, this method yields features very similar to those found by histogram methods. We discuss ways to
accelerate convergence of results.@S1063-651X~96!51305-X#

PACS number~s!: 05.45.1b, 02.50.Cw, 02.60.Dc

Chaotic systems are defined by sensitive dependence to
initial conditions, which makes trajectories unpredictable af-
ter long times if the initial condition is not perfectly known.
On the other hand, chaotic iterations have robust statistical
properties such as the invariant measure@IM or r(x)#, a
probability density over the rangeR of the chaotic variable
which does not change if a chaotic mapT acts on it. Lorenz
says that individual trajectories are analogous to weather,
while long-term global properties such as the IM are analo-
gous to climate@1#. The invariant measure satisfies the func-
tional equationT@r(x)#5r(x). Important properties of a
map such as the Lyapunov exponent (l) can be calculated
from the invariant measure:l5*RlnuT8(x)ur(x)dx.

Analytical expressions for the IM are rare: some have
been found@2# for special cases of the logistic, cusp and tent
maps starting from the Frobenius-Perron equation, or for
piecewise linear maps using a transfer matrix~TM! method.
More often the map is assumed to be ergodic~in general,
difficult to prove! and a single trajectory of the map is used
to collect histogram statistics for the IM: see@3# for example.
In this paper we show how to construct transfer matrices for
arbitrary chaotic maps. We also show that a particular eigen-
vector of this matrix gives the IM directly. We then apply
our construction to the logistic map,xn115axn(12xn),
known to have nontrivial IMs for many values ofa, and
compare results with the standard histogram method.

As in the histogram approach, we treatr(x) as a function
of a discrete variable: we divide the relevant range ofx into
m consecutive intervals, not necessarily of equal widths. Ac-
cordingly, the IM will consist ofm numbers with the usual
properties of a probability distribution. We will subsequently
express these numbers as a column vectorr . Once we have
chosen an appropriate partition, we transform the nonlinear
mapT(x) into anm3m matrix T in the following way.

Figure 1 shows a portion of a typical nonlinear map; we
consider the iterates of a partitionhi5@x0 ,x3# of width
h5x32x0 . We assume that the IM is constantwithin each
partition @4#, and that the TM elements which give the prob-
ability of a transition to the partitionshj ,hj11 , . . . are
therefore proportional to the width of their preimages in the

partition hi . For the example in Fig. 1,Tj ,i5(x12x0)/h,
Tj11,i5(x22x1)/h and Tj12,i5(x32x2)/h. We note that
the elementsTj ,i21 ,Tj12,i11Þ0, and that for this construc-
tion we have( iTj ,i51 for each columnj ; this is the defini-
tion of a stochastic matrix.

The transfer matrixT is similar in structure to the mapT.
For instance, for a parabolic map the nonzero elements ofT
will form a parabola of finite width. We note that this
method has been used to findr(x) analytically for piecewise
linear maps@2,5#. The method, however, was not used for
arbitrary nonlinear maps. A similar approach was also devel-
oped by Fox@6#, who formulated a master equation for the
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FIG. 1. Construction of a transfer matrix for a typical segment
of a chaotic map. See text for the calculation of the corresponding
matrix elements.
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logistic map in terms of a TM. In one version of the work,
the TM has only one nonzero element per column; in the
second version each interval is divided into afinite number
of subintervals, which are used to express the transition
probabilites as rational numbers, not as arbitrary real num-
bers as is done in the present work. The TM was used to
follow the evolution of any initial distribution function.
While the IM was not found directly, it was shown in@6# that
it can be obtained as an asymptotic result.

The functional equation for the IM~see first paragraph!
can now be written in vector form to findr , the vector rep-
resentation of the IM. The equation now readsTr 5 r , i.e., r
is just the eigenvector ofT corresponding to the eigenvalue
L51. This can be rewritten as~ T–I ! r 5 0, whereI is the
identity matrix. Thus, finding the IM reduces to determining
the kernel of~ T–I !. This may be achieved with the aid of
any standard equation solver@7#.

First we consider a simple analytical example: we calcu-
late the IM for the Bernoulli shift,xn1152xn , mod ~1!. If
we consider a uniform partition of the unit interval@0,1# into
m intervals (m a large even number, withn5m/2), the non-
zero elements ofT are

T1,15T2,15T3,25T4,25•••5Tm,n5T1,n115T2,n115T3,n12

5T4,n125•••5Tm,m5
1

2
. ~1!

It can be easily verified that the vectorr 5 „1/m,1/m, . . . … is
the normalized eigenvector corresponding toL51. In other
words the IM is uniform, as is well known for this map. The
reason one obtains the exact result is that the assumption@4#
of locally uniform IM happens to be satisfied in this map.

Next we consider a more complicated example, the logis-
tic map, already defined above. Many physical systems seem
to be in the same universality class as the logistic map~see
@8# for a review!. For most values ofa in the interval
3.57<a<4 the IM has defied analytical calculation—the
richness of structure of the functions can be seen in Fig. 2. A
few facts about the logistic map’s IM are known@9–11#, for
example that the peaks correspond to successive iterates of
the critical point,x51/2.

The logistic map’s IM can be easily found for arbitrary
values ofa with the histogram method. There is ample nu-
merical evidence for ergodicity~see@12# for an elementary
discussion of this concept! in this map: the iterates of all
initial conditions yield the same IM for each value ofa. The
histogram method, however, has two possible sources of er-
ror. One is that a number of iterations of the initial condition
must be discarded to ensure that the trajectory is on the at-
tractor, and that the sample over which the IM is estimated is
meaningful. There is noa priori way to know how many
iterations to throw away. The second is a statistical sampling
error. For example witha53.8 the IM shows an isolated
peak atx;0.4319, corresponding to the eighteenth iterate of

FIG. 2. Invariant distribution for the logistic map,a53.6. ~a!–~c! Transfer matrix~TM! method: 1000, 2000, and 4000 equal intervals
respectively;~d! histogram method~see text for details!.
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the critical point. We collected statistics over 20 independent
trajectories of 104 points, not including a transient. The bin
for the interval @0.40, 0.45# had a probability of
0.028160.0016, or a relative error of about 5%; see also Fig.
2~d! for numerical evidence of noise when the histogram
method is used. Despite these problems, the results of the
histogram method seem to be reliable if long enough tran-
sients are discarded and large enough samples are used, and
therefore we will use them for comparison.

Purely periodic cases in which the IM has a few sharp
peaks have been considered in@6#. For a53.6 the IM con-
sists of two disjoint segments~band chaos!: trajectories os-
cillate between the two bands at successive time steps; see
also the bifurcation diagram in@9#. In Fig. 2 we compare TM
and histogram results for this value ofa. Parts~a!–~c! were
obtained with the TM method with uniform intervals,
m51000, 2000, and 4000, respectively. In part~d! we used
the histogram method: 104 points were discarded and 105

were used to collect statistics over 4000 bins. All results are
normalized as probability densities. Three features can be
seen in the TM graphs. One is that the holes in the IM
emerge correctly in the column vectorr . Another is that
existing peaks grow while new ones form in the IM asm
increases. Convergence to the true IM is expected to be slow:
we are approximating a sharply peaked function with ter-
races of equal width. In the next paragraph we show how to
partly circumvent this problem. Finally, in the flat regions
between peaks the TM results are free of the statistical error
observed in Fig. 2~d!.

In Fig. 3 we show a case of full chaos with relatively few
peaks. It illustrates the advantages of unequal intervals. Fig-
ures 3~a! and ~b! show the results of 1000 and 4000 equal
intervals respectively. In 3~c! we have constructed a matrix
in which the intervals around the peaks observed in 3~a! were
finely divided, in order to locate the peaks more precisely. In
particular, the intervals@0.08,0.16#, @0.32,0.36#, @0.4,0.44#,
and @0.84,1.0# were divided into smaller intervals of
431024. The total number of intervals in this case is 1102.
We see that the resolution increases considerably when com-
pared with the case of 1000 intervals, and is comparable with
the case of 4000 equal intervals. Figure 3~d!, obtained with
the histogram method with numbers as Fig. 2~d!, is shown
for comparison.

In this paper we have developed a direct method for cal-
culating the invariant measure of chaotic maps. The formu-
lation is based on constructing a transfer matrix and finding a
particular eigenvector; it is general enough to apply to dissi-
pative or Hamiltonian maps in one or several dimensions.
The number of intervalsm is limited not by time, but by
memory@13#.

The IMs we have found for the logistic map agree with
those obtained with the histogram method; this provides in-
dependent evidence for the ergodicity of the logistic map.
The main advantage of the TM method over the standard
histogram method is the absence of sampling errors: for ex-
ample, compare the smoothness of the flat parts of Figs. 2~c!
and 2~d!. The main disadvantage of the method is the as-
sumption of a locally uniform IM within each interval, which

FIG. 3. Invariant distribution for the logistic map,a53.9. TM method:~a! and~b! 1000 and 4000 equal intervals, respectively;~c! 1102
intervals, with higher resolution near the peaks, as explained in text;~d! histogram method: numbers same as in Fig. 2~d!.

53 R4261DIRECT CALCULATION OF INVARIANT MEASURES FOR . . .



smooths out the resulting IM. However, our results indicate
that increasing the number of intervals results in systematic
convergence to the true IM. This convergence can be further
enhanced by increasing the resolution around the observed
peaks, as is shown in Fig. 3~c!.

The method of this paper can be useful in a realistic ex-
perimental situation: when the IM is known, but the full time
series is not. In that case one could surmise certain properties
of T ~continuity, number of maxima or minima, maximum or

average slope!, and propose and refine a transfer matrix that
is consistent with the experimental IM. We hope that this
work will lead to better understanding and identification of
real systems described by iterated maps.
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